summaryrefslogtreecommitdiff
path: root/embeddedsw/ThirdParty/sw_services/lwip211/src/contrib/ports/xilinx/netif/xemacpsif_physpeed.c
diff options
context:
space:
mode:
Diffstat (limited to 'embeddedsw/ThirdParty/sw_services/lwip211/src/contrib/ports/xilinx/netif/xemacpsif_physpeed.c')
-rw-r--r--embeddedsw/ThirdParty/sw_services/lwip211/src/contrib/ports/xilinx/netif/xemacpsif_physpeed.c1037
1 files changed, 1037 insertions, 0 deletions
diff --git a/embeddedsw/ThirdParty/sw_services/lwip211/src/contrib/ports/xilinx/netif/xemacpsif_physpeed.c b/embeddedsw/ThirdParty/sw_services/lwip211/src/contrib/ports/xilinx/netif/xemacpsif_physpeed.c
new file mode 100644
index 0000000..069020a
--- /dev/null
+++ b/embeddedsw/ThirdParty/sw_services/lwip211/src/contrib/ports/xilinx/netif/xemacpsif_physpeed.c
@@ -0,0 +1,1037 @@
+/*
+ * Copyright (C) 2010 - 2019 Xilinx, Inc.
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without modification,
+ * are permitted provided that the following conditions are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright notice,
+ * this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright notice,
+ * this list of conditions and the following disclaimer in the documentation
+ * and/or other materials provided with the distribution.
+ * 3. The name of the author may not be used to endorse or promote products
+ * derived from this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
+ * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
+ * SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+ * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
+ * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
+ * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
+ * OF SUCH DAMAGE.
+ *
+ * This file is part of the lwIP TCP/IP stack.
+ *
+ */
+
+/*****************************************************************************
+* This file xemacpsif_physpeed.c implements functionalities to:
+* - Detect the available PHYs connected to a MAC
+* - Negotiate speed
+* - Configure speed
+* - Configure the SLCR registers for the negotiated speed
+*
+* In a typical use case, users of the APIs implemented in this file need to
+* do the following.
+* - Call the API detect_phy. It probes for the available PHYs connected to a MAC.
+* The MACs can be Emac0 (XPAR_XEMACPS_0_BASEADDR, 0xE000B000) or Emac1
+* (XPAR_XEMACPS_0_BASEADDR, 0xE000C000). It populates an array to notify
+* about the detected PHYs. The array phymapemac0 is used for Emac0 and
+* phymapemac1 is for Emac1.
+* - The users need to parse the corresponding arrays, phymapemac0 or phymapemac1
+* to know the available PHYs for a MAC. The users then need to call
+* phy_setup_emacps to setup the PHYs for proper speed setting. The API
+* phy_setup_emacps should be called with the PHY address for which the speed
+* needs to be negotiated or configured. In a specific use case, if 2 PHYs are
+* connected to Emac0 with addresses of 7 and 11, then users get these address
+* details from phymapemac0 (after calling detect_phy) and then call
+* phy_setup_emacps twice, with ab address of 7 and 11.
+* - Points to note: The MAC can operate at only one speed. If a MAC is connected
+* to multiple PHYs, then all PHYs must negotiate and configured for the same
+* speed.
+* - This file implements static functions to set proper SLCR clocks. As stated
+* above, all PHYs connected to a PHY must operate at same speed and the SLCR
+* clock will be setup accordingly.
+*
+* This file implements the following PHY types.
+* - The standard RGMII.
+* - It provides support for GMII to RGMII converter Xilinx IP. This Xilinx IP
+* sits on the MDIO bus with a predefined PHY address. This IP exposes register
+* that needs to be programmed with the negotiated speed.
+* For example, in a typical design, the Emac0 or Emac1 exposes GMII interface.
+* The user can then use the Xilinx IP that converts GMII to RGMII.
+* The external PHY (most typically Marvell 88E1116R) negotiates for speed
+* with the remote PHY. The implementation in this file then programs the
+* Xilinx IP with this negotiated speed. The Xilinx IP has a predefined IP
+* address exposed through xparameters.h
+* - The SGMII and 1000 BaseX PHY interfaces.
+* If the PHY interface is SGMII or 1000 BaseX a separate "get_IEEE_phy_speed"
+* is used which is different from standard RGMII "get_IEEE_phy_speed".
+* The 1000 BaseX always operates at 1000 Mbps. The SGMII interface can
+* negotiate speed accordingly.
+* For SGMII or 1000 BaseX interfaces, the detect_phy should not be called.
+* The phy addresses for these interfaces are fixed at the design time.
+*
+* Point to note:
+* A MAC can not be connected to PHYs where there is a mix between
+* SGMII or 1000 Basex or GMII/MII/RGMII.
+* In a typical multiple PHY designs, it is expected that the PHYs connected
+* will be RGMII or GMII.
+*
+* The users can choose not to negotiate speed from lwip settings GUI.
+* If they opt to choose a particular PHY speed, then the PHY will hard code
+* the speed to operate only at the corresponding speed. It will not advertise
+* any other speeds. It is users responsibility to ensure that the remote PHY
+* supports the speed programmed through the lwip gui.
+*
+* The following combination of MDIO/PHY are supported:
+* - Multiple PHYs connected to the MDIO bus of a MAC. If Emac0 MDIO is connected
+* to single/multiple PHYs, it is supported. Similarly Emac1 MDIO connected to
+* single/multiple PHYs is supported.
+* - A design where both the interfaces are present and are connected to their own
+* MDIO bus is supported.
+*
+* The following MDIO/PHY setup is not supported:
+* - A design has both the MACs present. MDIO bus is available only for one MAC
+* (Emac0 or Emac1). This MDIO bus has multiple PHYs available for both the
+* MACs. The negotiated speed for PHYs sitting on the MDIO bus of one MAC will
+* not be see for the other MAC and hence the speed/SLCR settings of the other
+* MAC cannot be programmed. Hence this kind of design will not work for
+* this implementation.
+*
+********************************************************************************/
+
+#include "netif/xemacpsif.h"
+#include "lwipopts.h"
+#include "xparameters_ps.h"
+#include "xparameters.h"
+#include "xemac_ieee_reg.h"
+
+#if defined (__aarch64__)
+#include "bspconfig.h"
+#include "xil_smc.h"
+#endif
+
+#define PHY_DETECT_REG 1
+#define PHY_IDENTIFIER_1_REG 2
+#define PHY_IDENTIFIER_2_REG 3
+#define PHY_DETECT_MASK 0x1808
+#define PHY_MARVELL_IDENTIFIER 0x0141
+#define PHY_TI_IDENTIFIER 0x2000
+#define PHY_REALTEK_IDENTIFIER 0x001c
+#define PHY_XILINX_PCS_PMA_ID1 0x0174
+#define PHY_XILINX_PCS_PMA_ID2 0x0C00
+
+#define XEMACPS_GMII2RGMII_SPEED1000_FD 0x140
+#define XEMACPS_GMII2RGMII_SPEED100_FD 0x2100
+#define XEMACPS_GMII2RGMII_SPEED10_FD 0x100
+#define XEMACPS_GMII2RGMII_REG_NUM 0x10
+
+#define PHY_REGCR 0x0D
+#define PHY_ADDAR 0x0E
+#define PHY_RGMIIDCTL 0x86
+#define PHY_RGMIICTL 0x32
+#define PHY_STS 0x11
+#define PHY_TI_CR 0x10
+#define PHY_TI_CFG4 0x31
+
+#define PHY_REGCR_ADDR 0x001F
+#define PHY_REGCR_DATA 0x401F
+#define PHY_TI_CRVAL 0x5048
+#define PHY_TI_CFG4RESVDBIT7 0x80
+
+/* Frequency setting */
+#define SLCR_LOCK_ADDR (XPS_SYS_CTRL_BASEADDR + 0x4)
+#define SLCR_UNLOCK_ADDR (XPS_SYS_CTRL_BASEADDR + 0x8)
+#define SLCR_GEM0_CLK_CTRL_ADDR (XPS_SYS_CTRL_BASEADDR + 0x140)
+#define SLCR_GEM1_CLK_CTRL_ADDR (XPS_SYS_CTRL_BASEADDR + 0x144)
+#define SLCR_GEM_SRCSEL_EMIO 0x40
+#define SLCR_LOCK_KEY_VALUE 0x767B
+#define SLCR_UNLOCK_KEY_VALUE 0xDF0D
+#define SLCR_ADDR_GEM_RST_CTRL (XPS_SYS_CTRL_BASEADDR + 0x214)
+#define EMACPS_SLCR_DIV_MASK 0xFC0FC0FF
+
+#if XPAR_GIGE_PCS_PMA_1000BASEX_CORE_PRESENT == 1 || \
+ XPAR_GIGE_PCS_PMA_SGMII_CORE_PRESENT == 1
+#define PCM_PMA_CORE_PRESENT
+#else
+#undef PCM_PMA_CORE_PRESENT
+#endif
+
+#ifdef PCM_PMA_CORE_PRESENT
+#define IEEE_CTRL_RESET 0x9140
+#define IEEE_CTRL_ISOLATE_DISABLE 0xFBFF
+#endif
+
+u32_t phymapemac0[32];
+u32_t phymapemac1[32];
+
+#if defined (PCM_PMA_CORE_PRESENT) || defined (CONFIG_LINKSPEED_AUTODETECT)
+static u32_t get_IEEE_phy_speed(XEmacPs *xemacpsp, u32_t phy_addr);
+#endif
+static void SetUpSLCRDivisors(UINTPTR mac_baseaddr, s32_t speed);
+#if defined (CONFIG_LINKSPEED1000) || defined (CONFIG_LINKSPEED100) \
+ || defined (CONFIG_LINKSPEED10)
+static u32_t configure_IEEE_phy_speed(XEmacPs *xemacpsp, u32_t phy_addr, u32_t speed);
+#endif
+
+#ifdef PCM_PMA_CORE_PRESENT
+u32_t phy_setup_emacps (XEmacPs *xemacpsp, u32_t phy_addr)
+{
+ u32_t link_speed;
+ u16_t regval;
+ u16_t phy_id;
+
+ if(phy_addr == 0) {
+ for (phy_addr = 31; phy_addr > 0; phy_addr--) {
+ XEmacPs_PhyRead(xemacpsp, phy_addr, PHY_IDENTIFIER_1_REG,
+ &phy_id);
+
+ if (phy_id == PHY_XILINX_PCS_PMA_ID1) {
+ XEmacPs_PhyRead(xemacpsp, phy_addr, PHY_IDENTIFIER_2_REG,
+ &phy_id);
+ if (phy_id == PHY_XILINX_PCS_PMA_ID2) {
+ /* Found a valid PHY address */
+ LWIP_DEBUGF(NETIF_DEBUG, ("XEmacPs detect_phy: PHY detected at address %d.\r\n",
+ phy_addr));
+ break;
+ }
+ }
+ }
+ }
+
+ link_speed = get_IEEE_phy_speed(xemacpsp, phy_addr);
+ if (link_speed == 1000)
+ SetUpSLCRDivisors(xemacpsp->Config.BaseAddress,1000);
+ else if (link_speed == 100)
+ SetUpSLCRDivisors(xemacpsp->Config.BaseAddress,100);
+ else
+ SetUpSLCRDivisors(xemacpsp->Config.BaseAddress,10);
+
+ xil_printf("link speed for phy address %d: %d\r\n", phy_addr, link_speed);
+ return link_speed;
+}
+
+static u32_t get_IEEE_phy_speed(XEmacPs *xemacpsp, u32_t phy_addr)
+{
+ u16_t temp;
+ u16_t control;
+ u16_t status;
+ u16_t partner_capabilities;
+
+ xil_printf("Start PHY autonegotiation \r\n");
+
+ XEmacPs_PhyRead(xemacpsp, phy_addr, IEEE_CONTROL_REG_OFFSET, &control);
+ control |= IEEE_CTRL_AUTONEGOTIATE_ENABLE;
+ control |= IEEE_STAT_AUTONEGOTIATE_RESTART;
+ control &= IEEE_CTRL_ISOLATE_DISABLE;
+ XEmacPs_PhyWrite(xemacpsp, phy_addr, IEEE_CONTROL_REG_OFFSET, control);
+
+ xil_printf("Waiting for PHY to complete autonegotiation.\r\n");
+
+ XEmacPs_PhyRead(xemacpsp, phy_addr, IEEE_STATUS_REG_OFFSET, &status);
+ while ( !(status & IEEE_STAT_AUTONEGOTIATE_COMPLETE) ) {
+ sleep(1);
+ XEmacPs_PhyRead(xemacpsp, phy_addr, IEEE_STATUS_REG_OFFSET,
+ &status);
+ }
+ xil_printf("autonegotiation complete \r\n");
+
+#if XPAR_GIGE_PCS_PMA_1000BASEX_CORE_PRESENT == 1
+ XEmacPs_PhyWrite(xemacpsp, phy_addr, IEEE_PAGE_ADDRESS_REGISTER, 1);
+ XEmacPs_PhyRead(xemacpsp, phy_addr, IEEE_PARTNER_ABILITIES_1_REG_OFFSET, &temp);
+ if ((temp & 0x0020) == 0x0020) {
+ XEmacPs_PhyWrite(xemacpsp, phy_addr, IEEE_PAGE_ADDRESS_REGISTER, 0);
+ return 1000;
+ }
+ else {
+ XEmacPs_PhyWrite(xemacpsp, phy_addr, IEEE_PAGE_ADDRESS_REGISTER, 0);
+ xil_printf("Link error, temp = %x\r\n", temp);
+ return 0;
+ }
+#elif XPAR_GIGE_PCS_PMA_SGMII_CORE_PRESENT == 1
+ xil_printf("Waiting for Link to be up; Polling for SGMII core Reg \r\n");
+ XEmacPs_PhyRead(xemacpsp, phy_addr, IEEE_PARTNER_ABILITIES_1_REG_OFFSET, &temp);
+ while(!(temp & 0x8000)) {
+ XEmacPs_PhyRead(xemacpsp, phy_addr, IEEE_PARTNER_ABILITIES_1_REG_OFFSET, &temp);
+ }
+ if((temp & 0x0C00) == 0x0800) {
+ return 1000;
+ }
+ else if((temp & 0x0C00) == 0x0400) {
+ return 100;
+ }
+ else if((temp & 0x0C00) == 0x0000) {
+ return 10;
+ } else {
+ xil_printf("get_IEEE_phy_speed(): Invalid speed bit value, Defaulting to Speed = 10 Mbps\r\n");
+ XEmacPs_PhyRead(xemacpsp, phy_addr, IEEE_CONTROL_REG_OFFSET, &temp);
+ XEmacPs_PhyWrite(xemacpsp, phy_addr, IEEE_CONTROL_REG_OFFSET, 0x0100);
+ return 10;
+ }
+#endif
+
+}
+
+#else /*PCM_PMA_CORE_PRESENT not defined, GMII/RGMII case*/
+void detect_phy(XEmacPs *xemacpsp)
+{
+ u16_t phy_reg;
+ u32_t phy_addr;
+ u32_t emacnum;
+
+ if (xemacpsp->Config.BaseAddress == XPAR_XEMACPS_0_BASEADDR)
+ emacnum = 0;
+ else
+ emacnum = 1;
+ for (phy_addr = 31; phy_addr > 0; phy_addr--) {
+ XEmacPs_PhyRead(xemacpsp, phy_addr, PHY_DETECT_REG,
+ &phy_reg);
+
+ if ((phy_reg != 0xFFFF) &&
+ ((phy_reg & PHY_DETECT_MASK) == PHY_DETECT_MASK)) {
+ /* Found a valid PHY address */
+ LWIP_DEBUGF(NETIF_DEBUG, ("XEmacPs detect_phy: PHY detected at address %d.\r\n",
+ phy_addr));
+ if (emacnum == 0)
+ phymapemac0[phy_addr] = TRUE;
+ else
+ phymapemac1[phy_addr] = TRUE;
+
+ XEmacPs_PhyRead(xemacpsp, phy_addr, PHY_IDENTIFIER_1_REG,
+ &phy_reg);
+ if ((phy_reg != PHY_MARVELL_IDENTIFIER) &&
+ (phy_reg != PHY_TI_IDENTIFIER) &&
+ (phy_reg != PHY_REALTEK_IDENTIFIER)) {
+ xil_printf("WARNING: Not a Marvell or TI or Realtek Ethernet PHY. Please verify the initialization sequence\r\n");
+ }
+ }
+ }
+}
+
+u32_t phy_setup_emacps (XEmacPs *xemacpsp, u32_t phy_addr)
+{
+ u32_t link_speed;
+ u32_t conv_present = 0;
+ u32_t convspeeddupsetting = 0;
+ u32_t convphyaddr = 0;
+
+#ifdef XPAR_GMII2RGMIICON_0N_ETH0_ADDR
+ convphyaddr = XPAR_GMII2RGMIICON_0N_ETH0_ADDR;
+ conv_present = 1;
+#endif
+#ifdef XPAR_GMII2RGMIICON_0N_ETH1_ADDR
+ convphyaddr = XPAR_GMII2RGMIICON_0N_ETH1_ADDR;
+ conv_present = 1;
+#endif
+
+#ifdef CONFIG_LINKSPEED_AUTODETECT
+ link_speed = get_IEEE_phy_speed(xemacpsp, phy_addr);
+ if (link_speed == 1000) {
+ SetUpSLCRDivisors(xemacpsp->Config.BaseAddress,1000);
+ convspeeddupsetting = XEMACPS_GMII2RGMII_SPEED1000_FD;
+ } else if (link_speed == 100) {
+ SetUpSLCRDivisors(xemacpsp->Config.BaseAddress,100);
+ convspeeddupsetting = XEMACPS_GMII2RGMII_SPEED100_FD;
+ } else if (link_speed != XST_FAILURE){
+ SetUpSLCRDivisors(xemacpsp->Config.BaseAddress,10);
+ convspeeddupsetting = XEMACPS_GMII2RGMII_SPEED10_FD;
+ } else {
+ xil_printf("Phy setup error \r\n");
+ return XST_FAILURE;
+ }
+#elif defined(CONFIG_LINKSPEED1000)
+ SetUpSLCRDivisors(xemacpsp->Config.BaseAddress,1000);
+ link_speed = 1000;
+ configure_IEEE_phy_speed(xemacpsp, phy_addr, link_speed);
+ convspeeddupsetting = XEMACPS_GMII2RGMII_SPEED1000_FD;
+ sleep(1);
+#elif defined(CONFIG_LINKSPEED100)
+ SetUpSLCRDivisors(xemacpsp->Config.BaseAddress,100);
+ link_speed = 100;
+ configure_IEEE_phy_speed(xemacpsp, phy_addr, link_speed);
+ convspeeddupsetting = XEMACPS_GMII2RGMII_SPEED100_FD;
+ sleep(1);
+#elif defined(CONFIG_LINKSPEED10)
+ SetUpSLCRDivisors(xemacpsp->Config.BaseAddress,10);
+ link_speed = 10;
+ configure_IEEE_phy_speed(xemacpsp, phy_addr, link_speed);
+ convspeeddupsetting = XEMACPS_GMII2RGMII_SPEED10_FD;
+ sleep(1);
+#endif
+ if (conv_present) {
+ XEmacPs_PhyWrite(xemacpsp, convphyaddr,
+ XEMACPS_GMII2RGMII_REG_NUM, convspeeddupsetting);
+ }
+
+ xil_printf("link speed for phy address %d: %d\r\n", phy_addr, link_speed);
+ return link_speed;
+}
+
+#if defined CONFIG_LINKSPEED_AUTODETECT
+static u32_t get_TI_phy_speed(XEmacPs *xemacpsp, u32_t phy_addr)
+{
+ u16_t control;
+ u16_t status;
+ u16_t status_speed;
+ u32_t timeout_counter = 0;
+ u32_t phyregtemp;
+ u32_t RetStatus;
+
+ xil_printf("Start PHY autonegotiation \r\n");
+
+ XEmacPs_PhyRead(xemacpsp, phy_addr, 0x1F, (u16_t *)&phyregtemp);
+ phyregtemp |= 0x4000;
+ XEmacPs_PhyWrite(xemacpsp, phy_addr, 0x1F, phyregtemp);
+ RetStatus = XEmacPs_PhyRead(xemacpsp, phy_addr, 0x1F, (u16_t *)&phyregtemp);
+ if (RetStatus != XST_SUCCESS) {
+ xil_printf("Error during sw reset \n\r");
+ return XST_FAILURE;
+ }
+
+ XEmacPs_PhyRead(xemacpsp, phy_addr, 0, (u16_t *)&phyregtemp);
+ phyregtemp |= 0x8000;
+ XEmacPs_PhyWrite(xemacpsp, phy_addr, 0, phyregtemp);
+
+ /*
+ * Delay
+ */
+ sleep(1);
+
+ RetStatus = XEmacPs_PhyRead(xemacpsp, phy_addr, 0, (u16_t *)&phyregtemp);
+ if (RetStatus != XST_SUCCESS) {
+ xil_printf("Error during reset \n\r");
+ return XST_FAILURE;
+ }
+
+ /* FIFO depth */
+ XEmacPs_PhyWrite(xemacpsp, phy_addr, PHY_TI_CR, PHY_TI_CRVAL);
+ RetStatus = XEmacPs_PhyRead(xemacpsp, phy_addr, PHY_TI_CR, (u16_t *)&phyregtemp);
+ if (RetStatus != XST_SUCCESS) {
+ xil_printf("Error writing to 0x10 \n\r");
+ return XST_FAILURE;
+ }
+
+ /* TX/RX tuning */
+ /* Write to PHY_RGMIIDCTL */
+ XEmacPs_PhyWrite(xemacpsp, phy_addr, PHY_REGCR, PHY_REGCR_ADDR);
+ XEmacPs_PhyWrite(xemacpsp, phy_addr, PHY_ADDAR, PHY_RGMIIDCTL);
+ XEmacPs_PhyWrite(xemacpsp, phy_addr, PHY_REGCR, PHY_REGCR_DATA);
+ RetStatus = XEmacPs_PhyWrite(xemacpsp, phy_addr, PHY_ADDAR, 0xA8);
+ if (RetStatus != XST_SUCCESS) {
+ xil_printf("Error in tuning");
+ return XST_FAILURE;
+ }
+
+ /* Read PHY_RGMIIDCTL */
+ XEmacPs_PhyWrite(xemacpsp, phy_addr, PHY_REGCR, PHY_REGCR_ADDR);
+ XEmacPs_PhyWrite(xemacpsp, phy_addr, PHY_ADDAR, PHY_RGMIIDCTL);
+ XEmacPs_PhyWrite(xemacpsp, phy_addr, PHY_REGCR, PHY_REGCR_DATA);
+ RetStatus = XEmacPs_PhyRead(xemacpsp, phy_addr, PHY_ADDAR, (u16_t *)&phyregtemp);
+ if (RetStatus != XST_SUCCESS) {
+ xil_printf("Error in tuning");
+ return XST_FAILURE;
+ }
+
+ /* Write PHY_RGMIICTL */
+ XEmacPs_PhyWrite(xemacpsp, phy_addr, PHY_REGCR, PHY_REGCR_ADDR);
+ XEmacPs_PhyWrite(xemacpsp, phy_addr, PHY_ADDAR, PHY_RGMIICTL);
+ XEmacPs_PhyWrite(xemacpsp, phy_addr, PHY_REGCR, PHY_REGCR_DATA);
+ RetStatus = XEmacPs_PhyWrite(xemacpsp, phy_addr, PHY_ADDAR, 0xD3);
+ if (RetStatus != XST_SUCCESS) {
+ xil_printf("Error in tuning");
+ return XST_FAILURE;
+ }
+
+ /* Read PHY_RGMIICTL */
+ XEmacPs_PhyWrite(xemacpsp, phy_addr, PHY_REGCR, PHY_REGCR_ADDR);
+ XEmacPs_PhyWrite(xemacpsp, phy_addr, PHY_ADDAR, PHY_RGMIICTL);
+ XEmacPs_PhyWrite(xemacpsp, phy_addr, PHY_REGCR, PHY_REGCR_DATA);
+ RetStatus = XEmacPs_PhyRead(xemacpsp, phy_addr, PHY_ADDAR, (u16_t *)&phyregtemp);
+ if (RetStatus != XST_SUCCESS) {
+ xil_printf("Error in tuning");
+ return XST_FAILURE;
+ }
+
+ /* SW workaround for unstable link when RX_CTRL is not STRAP MODE 3 or 4 */
+ XEmacPs_PhyWrite(xemacpsp, phy_addr, PHY_REGCR, PHY_REGCR_ADDR);
+ XEmacPs_PhyWrite(xemacpsp, phy_addr, PHY_ADDAR, PHY_TI_CFG4);
+ XEmacPs_PhyWrite(xemacpsp, phy_addr, PHY_REGCR, PHY_REGCR_DATA);
+ RetStatus = XEmacPs_PhyRead(xemacpsp, phy_addr, PHY_ADDAR, (u16_t *)&phyregtemp);
+ phyregtemp &= ~(PHY_TI_CFG4RESVDBIT7);
+ XEmacPs_PhyWrite(xemacpsp, phy_addr, PHY_REGCR, PHY_REGCR_ADDR);
+ XEmacPs_PhyWrite(xemacpsp, phy_addr, PHY_ADDAR, PHY_TI_CFG4);
+ XEmacPs_PhyWrite(xemacpsp, phy_addr, PHY_REGCR, PHY_REGCR_DATA);
+ RetStatus = XEmacPs_PhyWrite(xemacpsp, phy_addr, PHY_ADDAR, phyregtemp);
+
+ XEmacPs_PhyRead(xemacpsp, phy_addr, IEEE_AUTONEGO_ADVERTISE_REG, &control);
+ control |= IEEE_ASYMMETRIC_PAUSE_MASK;
+ control |= IEEE_PAUSE_MASK;
+ control |= ADVERTISE_100;
+ control |= ADVERTISE_10;
+ XEmacPs_PhyWrite(xemacpsp, phy_addr, IEEE_AUTONEGO_ADVERTISE_REG, control);
+
+ XEmacPs_PhyRead(xemacpsp, phy_addr, IEEE_1000_ADVERTISE_REG_OFFSET,
+ &control);
+ control |= ADVERTISE_1000;
+ XEmacPs_PhyWrite(xemacpsp, phy_addr, IEEE_1000_ADVERTISE_REG_OFFSET,
+ control);
+
+ XEmacPs_PhyRead(xemacpsp, phy_addr, IEEE_CONTROL_REG_OFFSET, &control);
+ control |= IEEE_CTRL_AUTONEGOTIATE_ENABLE;
+ control |= IEEE_STAT_AUTONEGOTIATE_RESTART;
+ XEmacPs_PhyWrite(xemacpsp, phy_addr, IEEE_CONTROL_REG_OFFSET, control);
+
+ XEmacPs_PhyRead(xemacpsp, phy_addr, IEEE_CONTROL_REG_OFFSET, &control);
+ XEmacPs_PhyRead(xemacpsp, phy_addr, IEEE_STATUS_REG_OFFSET, &status);
+
+ xil_printf("Waiting for PHY to complete autonegotiation.\r\n");
+
+ while ( !(status & IEEE_STAT_AUTONEGOTIATE_COMPLETE) ) {
+ sleep(1);
+ timeout_counter++;
+
+ if (timeout_counter == 30) {
+ xil_printf("Auto negotiation error \r\n");
+ return XST_FAILURE;
+ }
+ XEmacPs_PhyRead(xemacpsp, phy_addr, IEEE_STATUS_REG_OFFSET, &status);
+ }
+ xil_printf("autonegotiation complete \r\n");
+
+ XEmacPs_PhyRead(xemacpsp, phy_addr, PHY_STS, &status_speed);
+ if ((status_speed & 0xC000) == 0x8000) {
+ return 1000;
+ } else if ((status_speed & 0xC000) == 0x4000) {
+ return 100;
+ } else {
+ return 10;
+ }
+
+ return XST_SUCCESS;
+}
+
+static u32_t get_Marvell_phy_speed(XEmacPs *xemacpsp, u32_t phy_addr)
+{
+ u16_t temp;
+ u16_t control;
+ u16_t status;
+ u16_t status_speed;
+ u32_t timeout_counter = 0;
+ u32_t temp_speed;
+
+ xil_printf("Start PHY autonegotiation \r\n");
+
+ XEmacPs_PhyWrite(xemacpsp,phy_addr, IEEE_PAGE_ADDRESS_REGISTER, 2);
+ XEmacPs_PhyRead(xemacpsp, phy_addr, IEEE_CONTROL_REG_MAC, &control);
+ control |= IEEE_RGMII_TXRX_CLOCK_DELAYED_MASK;
+ XEmacPs_PhyWrite(xemacpsp, phy_addr, IEEE_CONTROL_REG_MAC, control);
+
+ XEmacPs_PhyWrite(xemacpsp, phy_addr, IEEE_PAGE_ADDRESS_REGISTER, 0);
+
+ XEmacPs_PhyRead(xemacpsp, phy_addr, IEEE_AUTONEGO_ADVERTISE_REG, &control);
+ control |= IEEE_ASYMMETRIC_PAUSE_MASK;
+ control |= IEEE_PAUSE_MASK;
+ control |= ADVERTISE_100;
+ control |= ADVERTISE_10;
+ XEmacPs_PhyWrite(xemacpsp, phy_addr, IEEE_AUTONEGO_ADVERTISE_REG, control);
+
+ XEmacPs_PhyRead(xemacpsp, phy_addr, IEEE_1000_ADVERTISE_REG_OFFSET,
+ &control);
+ control |= ADVERTISE_1000;
+ XEmacPs_PhyWrite(xemacpsp, phy_addr, IEEE_1000_ADVERTISE_REG_OFFSET,
+ control);
+
+ XEmacPs_PhyWrite(xemacpsp, phy_addr, IEEE_PAGE_ADDRESS_REGISTER, 0);
+ XEmacPs_PhyRead(xemacpsp, phy_addr, IEEE_COPPER_SPECIFIC_CONTROL_REG,
+ &control);
+ control |= (7 << 12); /* max number of gigabit attempts */
+ control |= (1 << 11); /* enable downshift */
+ XEmacPs_PhyWrite(xemacpsp, phy_addr, IEEE_COPPER_SPECIFIC_CONTROL_REG,
+ control);
+ XEmacPs_PhyRead(xemacpsp, phy_addr, IEEE_CONTROL_REG_OFFSET, &control);
+ control |= IEEE_CTRL_AUTONEGOTIATE_ENABLE;
+ control |= IEEE_STAT_AUTONEGOTIATE_RESTART;
+ XEmacPs_PhyWrite(xemacpsp, phy_addr, IEEE_CONTROL_REG_OFFSET, control);
+
+ XEmacPs_PhyRead(xemacpsp, phy_addr, IEEE_CONTROL_REG_OFFSET, &control);
+ control |= IEEE_CTRL_RESET_MASK;
+ XEmacPs_PhyWrite(xemacpsp, phy_addr, IEEE_CONTROL_REG_OFFSET, control);
+
+ while (1) {
+ XEmacPs_PhyRead(xemacpsp, phy_addr, IEEE_CONTROL_REG_OFFSET, &control);
+ if (control & IEEE_CTRL_RESET_MASK)
+ continue;
+ else
+ break;
+ }
+
+ XEmacPs_PhyRead(xemacpsp, phy_addr, IEEE_STATUS_REG_OFFSET, &status);
+
+ xil_printf("Waiting for PHY to complete autonegotiation.\r\n");
+
+ while ( !(status & IEEE_STAT_AUTONEGOTIATE_COMPLETE) ) {
+ sleep(1);
+ XEmacPs_PhyRead(xemacpsp, phy_addr,
+ IEEE_COPPER_SPECIFIC_STATUS_REG_2, &temp);
+ timeout_counter++;
+
+ if (timeout_counter == 30) {
+ xil_printf("Auto negotiation error \r\n");
+ return XST_FAILURE;
+ }
+ XEmacPs_PhyRead(xemacpsp, phy_addr, IEEE_STATUS_REG_OFFSET, &status);
+ }
+ xil_printf("autonegotiation complete \r\n");
+
+ XEmacPs_PhyRead(xemacpsp, phy_addr,IEEE_SPECIFIC_STATUS_REG,
+ &status_speed);
+ if (status_speed & 0x400) {
+ temp_speed = status_speed & IEEE_SPEED_MASK;
+
+ if (temp_speed == IEEE_SPEED_1000)
+ return 1000;
+ else if(temp_speed == IEEE_SPEED_100)
+ return 100;
+ else
+ return 10;
+ }
+
+ return XST_SUCCESS;
+}
+
+static u32_t get_Realtek_phy_speed(XEmacPs *xemacpsp, u32_t phy_addr)
+{
+ u16_t control;
+ u16_t status;
+ u16_t status_speed;
+ u32_t timeout_counter = 0;
+ u32_t temp_speed;
+
+ xil_printf("Start PHY autonegotiation \r\n");
+
+ XEmacPs_PhyRead(xemacpsp, phy_addr, IEEE_AUTONEGO_ADVERTISE_REG, &control);
+ control |= IEEE_ASYMMETRIC_PAUSE_MASK;
+ control |= IEEE_PAUSE_MASK;
+ control |= ADVERTISE_100;
+ control |= ADVERTISE_10;
+ XEmacPs_PhyWrite(xemacpsp, phy_addr, IEEE_AUTONEGO_ADVERTISE_REG, control);
+
+ XEmacPs_PhyRead(xemacpsp, phy_addr, IEEE_1000_ADVERTISE_REG_OFFSET,
+ &control);
+ control |= ADVERTISE_1000;
+ XEmacPs_PhyWrite(xemacpsp, phy_addr, IEEE_1000_ADVERTISE_REG_OFFSET,
+ control);
+
+ XEmacPs_PhyRead(xemacpsp, phy_addr, IEEE_CONTROL_REG_OFFSET, &control);
+ control |= IEEE_CTRL_AUTONEGOTIATE_ENABLE;
+ control |= IEEE_STAT_AUTONEGOTIATE_RESTART;
+ XEmacPs_PhyWrite(xemacpsp, phy_addr, IEEE_CONTROL_REG_OFFSET, control);
+
+ XEmacPs_PhyRead(xemacpsp, phy_addr, IEEE_CONTROL_REG_OFFSET, &control);
+ control |= IEEE_CTRL_RESET_MASK;
+ XEmacPs_PhyWrite(xemacpsp, phy_addr, IEEE_CONTROL_REG_OFFSET, control);
+
+ while (1) {
+ XEmacPs_PhyRead(xemacpsp, phy_addr, IEEE_CONTROL_REG_OFFSET, &control);
+ if (control & IEEE_CTRL_RESET_MASK)
+ continue;
+ else
+ break;
+ }
+
+ XEmacPs_PhyRead(xemacpsp, phy_addr, IEEE_STATUS_REG_OFFSET, &status);
+
+ xil_printf("Waiting for PHY to complete autonegotiation.\r\n");
+
+ while ( !(status & IEEE_STAT_AUTONEGOTIATE_COMPLETE) ) {
+ sleep(1);
+ timeout_counter++;
+
+ if (timeout_counter == 30) {
+ xil_printf("Auto negotiation error \r\n");
+ return XST_FAILURE;
+ }
+ XEmacPs_PhyRead(xemacpsp, phy_addr, IEEE_STATUS_REG_OFFSET, &status);
+ }
+ xil_printf("autonegotiation complete \r\n");
+
+ XEmacPs_PhyRead(xemacpsp, phy_addr,IEEE_SPECIFIC_STATUS_REG,
+ &status_speed);
+ if (status_speed & 0x400) {
+ temp_speed = status_speed & IEEE_SPEED_MASK;
+
+ if (temp_speed == IEEE_SPEED_1000)
+ return 1000;
+ else if(temp_speed == IEEE_SPEED_100)
+ return 100;
+ else
+ return 10;
+ }
+
+ return XST_FAILURE;
+}
+
+static u32_t get_IEEE_phy_speed(XEmacPs *xemacpsp, u32_t phy_addr)
+{
+ u16_t phy_identity;
+ u32_t RetStatus;
+
+ XEmacPs_PhyRead(xemacpsp, phy_addr, PHY_IDENTIFIER_1_REG,
+ &phy_identity);
+ if (phy_identity == PHY_TI_IDENTIFIER) {
+ RetStatus = get_TI_phy_speed(xemacpsp, phy_addr);
+ } else if (phy_identity == PHY_REALTEK_IDENTIFIER) {
+ RetStatus = get_Realtek_phy_speed(xemacpsp, phy_addr);
+ } else {
+ RetStatus = get_Marvell_phy_speed(xemacpsp, phy_addr);
+ }
+
+ return RetStatus;
+}
+#endif
+
+#if defined (CONFIG_LINKSPEED1000) || defined (CONFIG_LINKSPEED100) \
+ || defined (CONFIG_LINKSPEED10)
+static u32_t configure_IEEE_phy_speed(XEmacPs *xemacpsp, u32_t phy_addr, u32_t speed)
+{
+ u16_t control;
+ u16_t autonereg;
+
+ XEmacPs_PhyWrite(xemacpsp,phy_addr, IEEE_PAGE_ADDRESS_REGISTER, 2);
+ XEmacPs_PhyRead(xemacpsp, phy_addr, IEEE_CONTROL_REG_MAC, &control);
+ control |= IEEE_RGMII_TXRX_CLOCK_DELAYED_MASK;
+ XEmacPs_PhyWrite(xemacpsp, phy_addr, IEEE_CONTROL_REG_MAC, control);
+
+ XEmacPs_PhyWrite(xemacpsp, phy_addr, IEEE_PAGE_ADDRESS_REGISTER, 0);
+
+ XEmacPs_PhyRead(xemacpsp, phy_addr, IEEE_AUTONEGO_ADVERTISE_REG, &autonereg);
+ autonereg |= IEEE_ASYMMETRIC_PAUSE_MASK;
+ autonereg |= IEEE_PAUSE_MASK;
+ XEmacPs_PhyWrite(xemacpsp, phy_addr, IEEE_AUTONEGO_ADVERTISE_REG, autonereg);
+
+ XEmacPs_PhyRead(xemacpsp, phy_addr, IEEE_CONTROL_REG_OFFSET, &control);
+ control &= ~IEEE_CTRL_LINKSPEED_1000M;
+ control &= ~IEEE_CTRL_LINKSPEED_100M;
+ control &= ~IEEE_CTRL_LINKSPEED_10M;
+
+ if (speed == 1000) {
+ control |= IEEE_CTRL_LINKSPEED_1000M;
+
+ /* Don't advertise PHY speed of 100 Mbps */
+ XEmacPs_PhyRead(xemacpsp, phy_addr, IEEE_AUTONEGO_ADVERTISE_REG, &autonereg);
+ autonereg &= (~ADVERTISE_100);
+ XEmacPs_PhyWrite(xemacpsp, phy_addr, IEEE_AUTONEGO_ADVERTISE_REG, autonereg);
+
+ /* Don't advertise PHY speed of 10 Mbps */
+ XEmacPs_PhyRead(xemacpsp, phy_addr, IEEE_AUTONEGO_ADVERTISE_REG, &autonereg);
+ autonereg &= (~ADVERTISE_10);
+ XEmacPs_PhyWrite(xemacpsp, phy_addr, IEEE_AUTONEGO_ADVERTISE_REG, autonereg);
+
+ /* Advertise PHY speed of 1000 Mbps */
+ XEmacPs_PhyRead(xemacpsp, phy_addr, IEEE_1000_ADVERTISE_REG_OFFSET, &autonereg);
+ autonereg |= ADVERTISE_1000;
+ XEmacPs_PhyWrite(xemacpsp, phy_addr, IEEE_1000_ADVERTISE_REG_OFFSET, autonereg);
+ }
+
+ else if (speed == 100) {
+ control |= IEEE_CTRL_LINKSPEED_100M;
+
+ /* Don't advertise PHY speed of 1000 Mbps */
+ XEmacPs_PhyRead(xemacpsp, phy_addr, IEEE_1000_ADVERTISE_REG_OFFSET, &autonereg);
+ autonereg &= (~ADVERTISE_1000);
+ XEmacPs_PhyWrite(xemacpsp, phy_addr, IEEE_1000_ADVERTISE_REG_OFFSET, autonereg);
+
+ /* Don't advertise PHY speed of 10 Mbps */
+ XEmacPs_PhyRead(xemacpsp, phy_addr, IEEE_AUTONEGO_ADVERTISE_REG, &autonereg);
+ autonereg &= (~ADVERTISE_10);
+ XEmacPs_PhyWrite(xemacpsp, phy_addr, IEEE_AUTONEGO_ADVERTISE_REG, autonereg);
+
+ /* Advertise PHY speed of 100 Mbps */
+ XEmacPs_PhyRead(xemacpsp, phy_addr, IEEE_AUTONEGO_ADVERTISE_REG, &autonereg);
+ autonereg |= ADVERTISE_100;
+ XEmacPs_PhyWrite(xemacpsp, phy_addr, IEEE_AUTONEGO_ADVERTISE_REG, autonereg);
+ }
+
+ else if (speed == 10) {
+ control |= IEEE_CTRL_LINKSPEED_10M;
+
+ /* Don't advertise PHY speed of 1000 Mbps */
+ XEmacPs_PhyRead(xemacpsp, phy_addr, IEEE_1000_ADVERTISE_REG_OFFSET, &autonereg);
+ autonereg &= (~ADVERTISE_1000);
+ XEmacPs_PhyWrite(xemacpsp, phy_addr, IEEE_1000_ADVERTISE_REG_OFFSET, autonereg);
+
+ /* Don't advertise PHY speed of 100 Mbps */
+ XEmacPs_PhyRead(xemacpsp, phy_addr, IEEE_AUTONEGO_ADVERTISE_REG, &autonereg);
+ autonereg &= (~ADVERTISE_100);
+ XEmacPs_PhyWrite(xemacpsp, phy_addr, IEEE_AUTONEGO_ADVERTISE_REG, autonereg);
+
+ /* Advertise PHY speed of 10 Mbps */
+ XEmacPs_PhyRead(xemacpsp, phy_addr, IEEE_AUTONEGO_ADVERTISE_REG, &autonereg);
+ autonereg |= ADVERTISE_10;
+ XEmacPs_PhyWrite(xemacpsp, phy_addr, IEEE_AUTONEGO_ADVERTISE_REG, autonereg);
+ }
+
+ XEmacPs_PhyWrite(xemacpsp, phy_addr, IEEE_CONTROL_REG_OFFSET,
+ control | IEEE_CTRL_RESET_MASK);
+ {
+ volatile s32_t wait;
+ for (wait=0; wait < 100000; wait++);
+ }
+ return 0;
+}
+#endif
+#endif /*PCM_PMA_CORE_PRESENT*/
+
+static void SetUpSLCRDivisors(UINTPTR mac_baseaddr, s32_t speed)
+{
+ volatile UINTPTR slcrBaseAddress;
+ u32_t SlcrDiv0 = 0;
+ u32_t SlcrDiv1 = 0;
+ u32_t SlcrTxClkCntrl;
+ u32_t gigeversion;
+ volatile UINTPTR CrlApbBaseAddr;
+ u32_t CrlApbDiv0 = 0;
+ u32_t CrlApbDiv1 = 0;
+ u32_t CrlApbGemCtrl;
+#if defined (__aarch64__) && (EL1_NONSECURE == 1)
+ u32_t ClkId;
+#endif
+
+ gigeversion = ((Xil_In32(mac_baseaddr + 0xFC)) >> 16) & 0xFFF;
+ if (gigeversion == 2) {
+
+ Xil_Out32(SLCR_UNLOCK_ADDR, SLCR_UNLOCK_KEY_VALUE);
+
+ if (mac_baseaddr == ZYNQ_EMACPS_0_BASEADDR) {
+ slcrBaseAddress = SLCR_GEM0_CLK_CTRL_ADDR;
+ } else {
+ slcrBaseAddress = SLCR_GEM1_CLK_CTRL_ADDR;
+ }
+
+ if(Xil_In32(slcrBaseAddress) &
+ SLCR_GEM_SRCSEL_EMIO) {
+ return;
+ }
+
+ if (speed == 1000) {
+ if (mac_baseaddr == ZYNQ_EMACPS_0_BASEADDR) {
+#ifdef XPAR_PS7_ETHERNET_0_ENET_SLCR_1000MBPS_DIV0
+ SlcrDiv0 = XPAR_PS7_ETHERNET_0_ENET_SLCR_1000MBPS_DIV0;
+ SlcrDiv1 = XPAR_PS7_ETHERNET_0_ENET_SLCR_1000MBPS_DIV1;
+#endif
+ } else {
+#ifdef XPAR_PS7_ETHERNET_1_ENET_SLCR_1000MBPS_DIV0
+ SlcrDiv0 = XPAR_PS7_ETHERNET_1_ENET_SLCR_1000MBPS_DIV0;
+ SlcrDiv1 = XPAR_PS7_ETHERNET_1_ENET_SLCR_1000MBPS_DIV1;
+#endif
+ }
+ } else if (speed == 100) {
+ if (mac_baseaddr == ZYNQ_EMACPS_0_BASEADDR) {
+#ifdef XPAR_PS7_ETHERNET_0_ENET_SLCR_100MBPS_DIV0
+ SlcrDiv0 = XPAR_PS7_ETHERNET_0_ENET_SLCR_100MBPS_DIV0;
+ SlcrDiv1 = XPAR_PS7_ETHERNET_0_ENET_SLCR_100MBPS_DIV1;
+#endif
+ } else {
+#ifdef XPAR_PS7_ETHERNET_1_ENET_SLCR_100MBPS_DIV0
+ SlcrDiv0 = XPAR_PS7_ETHERNET_1_ENET_SLCR_100MBPS_DIV0;
+ SlcrDiv1 = XPAR_PS7_ETHERNET_1_ENET_SLCR_100MBPS_DIV1;
+#endif
+ }
+ } else {
+ if (mac_baseaddr == ZYNQ_EMACPS_0_BASEADDR) {
+#ifdef XPAR_PS7_ETHERNET_0_ENET_SLCR_10MBPS_DIV0
+ SlcrDiv0 = XPAR_PS7_ETHERNET_0_ENET_SLCR_10MBPS_DIV0;
+ SlcrDiv1 = XPAR_PS7_ETHERNET_0_ENET_SLCR_10MBPS_DIV1;
+#endif
+ } else {
+#ifdef XPAR_PS7_ETHERNET_1_ENET_SLCR_10MBPS_DIV0
+ SlcrDiv0 = XPAR_PS7_ETHERNET_1_ENET_SLCR_10MBPS_DIV0;
+ SlcrDiv1 = XPAR_PS7_ETHERNET_1_ENET_SLCR_10MBPS_DIV1;
+#endif
+ }
+ }
+
+ if (SlcrDiv0 != 0 && SlcrDiv1 != 0) {
+ SlcrTxClkCntrl = Xil_In32(slcrBaseAddress);
+ SlcrTxClkCntrl &= EMACPS_SLCR_DIV_MASK;
+ SlcrTxClkCntrl |= (SlcrDiv1 << 20);
+ SlcrTxClkCntrl |= (SlcrDiv0 << 8);
+ Xil_Out32(slcrBaseAddress, SlcrTxClkCntrl);
+ Xil_Out32(SLCR_LOCK_ADDR, SLCR_LOCK_KEY_VALUE);
+ } else {
+ xil_printf("Clock Divisors incorrect - Please check\r\n");
+ }
+ } else if (gigeversion == GEM_VERSION_ZYNQMP) {
+ /* Setup divisors in CRL_APB for Zynq Ultrascale+ MPSoC */
+ if (mac_baseaddr == ZYNQMP_EMACPS_0_BASEADDR) {
+ CrlApbBaseAddr = CRL_APB_GEM0_REF_CTRL;
+ } else if (mac_baseaddr == ZYNQMP_EMACPS_1_BASEADDR) {
+ CrlApbBaseAddr = CRL_APB_GEM1_REF_CTRL;
+ } else if (mac_baseaddr == ZYNQMP_EMACPS_2_BASEADDR) {
+ CrlApbBaseAddr = CRL_APB_GEM2_REF_CTRL;
+ } else if (mac_baseaddr == ZYNQMP_EMACPS_3_BASEADDR) {
+ CrlApbBaseAddr = CRL_APB_GEM3_REF_CTRL;
+ }
+
+ if (speed == 1000) {
+ if (mac_baseaddr == ZYNQMP_EMACPS_0_BASEADDR) {
+#ifdef XPAR_PSU_ETHERNET_0_ENET_SLCR_1000MBPS_DIV0
+ CrlApbDiv0 = XPAR_PSU_ETHERNET_0_ENET_SLCR_1000MBPS_DIV0;
+ CrlApbDiv1 = XPAR_PSU_ETHERNET_0_ENET_SLCR_1000MBPS_DIV1;
+#endif
+ } else if (mac_baseaddr == ZYNQMP_EMACPS_1_BASEADDR) {
+#ifdef XPAR_PSU_ETHERNET_1_ENET_SLCR_1000MBPS_DIV0
+ CrlApbDiv0 = XPAR_PSU_ETHERNET_1_ENET_SLCR_1000MBPS_DIV0;
+ CrlApbDiv1 = XPAR_PSU_ETHERNET_1_ENET_SLCR_1000MBPS_DIV1;
+#endif
+ } else if (mac_baseaddr == ZYNQMP_EMACPS_2_BASEADDR) {
+#ifdef XPAR_PSU_ETHERNET_2_ENET_SLCR_1000MBPS_DIV0
+ CrlApbDiv0 = XPAR_PSU_ETHERNET_2_ENET_SLCR_1000MBPS_DIV0;
+ CrlApbDiv1 = XPAR_PSU_ETHERNET_2_ENET_SLCR_1000MBPS_DIV1;
+#endif
+ } else if (mac_baseaddr == ZYNQMP_EMACPS_3_BASEADDR) {
+#ifdef XPAR_PSU_ETHERNET_3_ENET_SLCR_1000MBPS_DIV0
+ CrlApbDiv0 = XPAR_PSU_ETHERNET_3_ENET_SLCR_1000MBPS_DIV0;
+ CrlApbDiv1 = XPAR_PSU_ETHERNET_3_ENET_SLCR_1000MBPS_DIV1;
+#endif
+ }
+ } else if (speed == 100) {
+ if (mac_baseaddr == ZYNQMP_EMACPS_0_BASEADDR) {
+#ifdef XPAR_PSU_ETHERNET_0_ENET_SLCR_100MBPS_DIV0
+ CrlApbDiv0 = XPAR_PSU_ETHERNET_0_ENET_SLCR_100MBPS_DIV0;
+ CrlApbDiv1 = XPAR_PSU_ETHERNET_0_ENET_SLCR_100MBPS_DIV1;
+#endif
+ } else if (mac_baseaddr == ZYNQMP_EMACPS_1_BASEADDR) {
+#ifdef XPAR_PSU_ETHERNET_1_ENET_SLCR_100MBPS_DIV0
+ CrlApbDiv0 = XPAR_PSU_ETHERNET_1_ENET_SLCR_100MBPS_DIV0;
+ CrlApbDiv1 = XPAR_PSU_ETHERNET_1_ENET_SLCR_100MBPS_DIV1;
+#endif
+ } else if (mac_baseaddr == ZYNQMP_EMACPS_2_BASEADDR) {
+#ifdef XPAR_PSU_ETHERNET_2_ENET_SLCR_100MBPS_DIV0
+ CrlApbDiv0 = XPAR_PSU_ETHERNET_2_ENET_SLCR_100MBPS_DIV0;
+ CrlApbDiv1 = XPAR_PSU_ETHERNET_2_ENET_SLCR_100MBPS_DIV1;
+#endif
+ } else if (mac_baseaddr == ZYNQMP_EMACPS_3_BASEADDR) {
+#ifdef XPAR_PSU_ETHERNET_3_ENET_SLCR_100MBPS_DIV0
+ CrlApbDiv0 = XPAR_PSU_ETHERNET_3_ENET_SLCR_100MBPS_DIV0;
+ CrlApbDiv1 = XPAR_PSU_ETHERNET_3_ENET_SLCR_100MBPS_DIV1;
+#endif
+ }
+ } else {
+ if (mac_baseaddr == ZYNQMP_EMACPS_0_BASEADDR) {
+#ifdef XPAR_PSU_ETHERNET_0_ENET_SLCR_10MBPS_DIV0
+ CrlApbDiv0 = XPAR_PSU_ETHERNET_0_ENET_SLCR_10MBPS_DIV0;
+ CrlApbDiv1 = XPAR_PSU_ETHERNET_0_ENET_SLCR_10MBPS_DIV1;
+#endif
+ } else if (mac_baseaddr == ZYNQMP_EMACPS_1_BASEADDR) {
+#ifdef XPAR_PSU_ETHERNET_1_ENET_SLCR_10MBPS_DIV0
+ CrlApbDiv0 = XPAR_PSU_ETHERNET_1_ENET_SLCR_10MBPS_DIV0;
+ CrlApbDiv1 = XPAR_PSU_ETHERNET_1_ENET_SLCR_10MBPS_DIV1;
+#endif
+ } else if (mac_baseaddr == ZYNQMP_EMACPS_2_BASEADDR) {
+#ifdef XPAR_PSU_ETHERNET_2_ENET_SLCR_10MBPS_DIV0
+ CrlApbDiv0 = XPAR_PSU_ETHERNET_2_ENET_SLCR_10MBPS_DIV0;
+ CrlApbDiv1 = XPAR_PSU_ETHERNET_2_ENET_SLCR_10MBPS_DIV1;
+#endif
+ } else if (mac_baseaddr == ZYNQMP_EMACPS_3_BASEADDR) {
+#ifdef XPAR_PSU_ETHERNET_3_ENET_SLCR_10MBPS_DIV0
+ CrlApbDiv0 = XPAR_PSU_ETHERNET_3_ENET_SLCR_10MBPS_DIV0;
+ CrlApbDiv1 = XPAR_PSU_ETHERNET_3_ENET_SLCR_10MBPS_DIV1;
+#endif
+ }
+ }
+
+ if (CrlApbDiv0 != 0 && CrlApbDiv1 != 0) {
+ #if defined (__aarch64__) && (EL1_NONSECURE == 1)
+ XSmc_OutVar RegRead;
+ RegRead = Xil_Smc(MMIO_READ_SMC_FID, (u64)(CrlApbBaseAddr),
+ 0, 0, 0, 0, 0, 0);
+ CrlApbGemCtrl = RegRead.Arg0 >> 32;
+ #else
+ CrlApbGemCtrl = Xil_In32(CrlApbBaseAddr);
+ #endif
+ CrlApbGemCtrl &= ~CRL_APB_GEM_DIV0_MASK;
+ CrlApbGemCtrl |= CrlApbDiv0 << CRL_APB_GEM_DIV0_SHIFT;
+ CrlApbGemCtrl &= ~CRL_APB_GEM_DIV1_MASK;
+ CrlApbGemCtrl |= CrlApbDiv1 << CRL_APB_GEM_DIV1_SHIFT;
+ #if defined (__aarch64__) && (EL1_NONSECURE == 1)
+ Xil_Smc(MMIO_WRITE_SMC_FID, (u64)(CrlApbBaseAddr) | ((u64)(0xFFFFFFFF) << 32),
+ (u64)CrlApbGemCtrl, 0, 0, 0, 0, 0);
+ do {
+ RegRead = Xil_Smc(MMIO_READ_SMC_FID, (u64)(CrlApbBaseAddr),
+ 0, 0, 0, 0, 0, 0);
+ } while((RegRead.Arg0 >> 32) != CrlApbGemCtrl);
+ #else
+ Xil_Out32(CrlApbBaseAddr, CrlApbGemCtrl);
+ #endif
+ } else {
+ xil_printf("Clock Divisors incorrect - Please check\r\n");
+ }
+ } else if (gigeversion == GEM_VERSION_VERSAL) {
+ /* Setup divisors in CRL for Versal */
+ if (mac_baseaddr == VERSAL_EMACPS_0_BASEADDR) {
+ CrlApbBaseAddr = VERSAL_CRL_GEM0_REF_CTRL;
+#if defined (__aarch64__) && (EL1_NONSECURE == 1)
+ ClkId = CLK_GEM0_REF;
+#endif
+ } else if (mac_baseaddr == VERSAL_EMACPS_1_BASEADDR) {
+ CrlApbBaseAddr = VERSAL_CRL_GEM1_REF_CTRL;
+#if defined (__aarch64__) && (EL1_NONSECURE == 1)
+ ClkId = CLK_GEM1_REF;
+#endif
+ }
+
+ if (speed == 1000) {
+ if (mac_baseaddr == VERSAL_EMACPS_0_BASEADDR) {
+#ifdef XPAR_VERSAL_CIPS_0_PSPMC_0_PSV_ETHERNET_0_ENET_SLCR_1000MBPS_DIV0
+ CrlApbDiv0 = XPAR_VERSAL_CIPS_0_PSPMC_0_PSV_ETHERNET_0_ENET_SLCR_1000MBPS_DIV0;
+#endif
+ } else if (mac_baseaddr == VERSAL_EMACPS_1_BASEADDR) {
+#ifdef XPAR_VERSAL_CIPS_0_PSPMC_0_PSV_ETHERNET_1_ENET_SLCR_1000MBPS_DIV0
+ CrlApbDiv0 = XPAR_VERSAL_CIPS_0_PSPMC_0_PSV_ETHERNET_1_ENET_SLCR_1000MBPS_DIV0;
+#endif
+ }
+ } else if (speed == 100) {
+ if (mac_baseaddr == VERSAL_EMACPS_0_BASEADDR) {
+#ifdef XPAR_VERSAL_CIPS_0_PSPMC_0_PSV_ETHERNET_0_ENET_SLCR_100MBPS_DIV0
+ CrlApbDiv0 = XPAR_VERSAL_CIPS_0_PSPMC_0_PSV_ETHERNET_0_ENET_SLCR_100MBPS_DIV0;
+#endif
+ } else if (mac_baseaddr == VERSAL_EMACPS_1_BASEADDR) {
+#ifdef XPAR_VERSAL_CIPS_0_PSPMC_0_PSV_ETHERNET_1_ENET_SLCR_100MBPS_DIV0
+ CrlApbDiv0 = XPAR_VERSAL_CIPS_0_PSPMC_0_PSV_ETHERNET_1_ENET_SLCR_100MBPS_DIV0;
+#endif
+ }
+ } else {
+ if (mac_baseaddr == VERSAL_EMACPS_0_BASEADDR) {
+#ifdef XPAR_VERSAL_CIPS_0_PSPMC_0_PSV_ETHERNET_0_ENET_SLCR_10MBPS_DIV0
+ CrlApbDiv0 = XPAR_VERSAL_CIPS_0_PSPMC_0_PSV_ETHERNET_0_ENET_SLCR_10MBPS_DIV0;
+#endif
+ } else if (mac_baseaddr == VERSAL_EMACPS_1_BASEADDR) {
+#ifdef XPAR_VERSAL_CIPS_0_PSPMC_0_PSV_ETHERNET_1_ENET_SLCR_10MBPS_DIV0
+ CrlApbDiv0 = XPAR_VERSAL_CIPS_0_PSPMC_0_PSV_ETHERNET_1_ENET_SLCR_10MBPS_DIV0;
+#endif
+ }
+ }
+
+ if (CrlApbDiv0 != 0) {
+#if defined (__aarch64__) && (EL1_NONSECURE == 1)
+ Xil_Smc(PM_SET_DIVIDER_SMC_FID, (((u64)CrlApbDiv0 << 32) | ClkId), 0, 0, 0, 0, 0, 0);
+#else
+ CrlApbGemCtrl = Xil_In32(CrlApbBaseAddr);
+ CrlApbGemCtrl &= ~VERSAL_CRL_GEM_DIV_MASK;
+ CrlApbGemCtrl |= CrlApbDiv0 << VERSAL_CRL_APB_GEM_DIV_SHIFT;
+
+ Xil_Out32(CrlApbBaseAddr, CrlApbGemCtrl);
+#endif
+ } else {
+ xil_printf("Clock Divisors incorrect - Please check\r\n");
+ }
+ }
+
+ return;
+}